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Problem statement

The optimal control problem (OCP) PT (x)

Solve repeatedly for different x ∈Rn

min
u(·)

VT (x,u(·)),
∫ T

0
`(x(t ),u(t ))d t +V f (x(T )) s. t.

ẋ = f (x,u), Ax +Bu, x(0) = x

and the control constraint: u(t ) ∈U
Quadratic cost functions: `(x,u), 1

2 (x ′Qx +u′Ru), V f (x), 1
2 x ′P x

Main assumptions

R and P symmetric positive definite (SPD), Q SPSD, and

U,
m∏

i=1
Ui where Ui , [ui

min,ui
max]

(A,B) stabilizable, (A,Q) detectable, T large enough that x0(T ) ∈ X f ,
invariant set associated with V f (·): terminal constraint x(T ) ∈ X f is omitted
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Input parameterizations and unconstrained analysis

Three possible holds in t ∈ [t j , t j+1]

ZOH: u(t ), u j

PWLH: u(t ), u j + s j (t − t j ) or let s j ,
v j −u j

t j+1−t j
:

u(t ) = u j (1− r (t ))+ v j r (t ) where r (t ) = t−t j

t j+1−t j

FFOH: like PWLH but continuous at each t j , i.e. u j = v j−1

Convergence of the optimal cost without control constraint

True optimal cost is well-known:
V 0

T (x) = 1
2 x ′P x, P solution to ARE

Optimal cost under each hold i :
V i

T (x) = 1
2 x ′Πi x,Πi solution to a DARE

Πi → P as ∆, t j+1 − t j → 0 in 4th order for
PWLH and FFOH and 2nd order for ZOH 10−9
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Previously proposed method1

Solution of the optimal control problem

K x

u0

s0
u1 s1

s2

u2

∆2∆1∆0

t0 = 0 t1 t2 t3 tN = T

Use N uneven intervals with a
chosen hold (ZOH, PWLH or
FFOH)

Solve exactly the OCP as a QP

Bisect all intervals, until the
cost “stops” decreasing

Main features
All QP terms are precomputed offline for gradually refined grids:

min
w

1

2
w′Hw+w′Qx, s.t. Aw ≤ b

Fast online implementation

1G. Pannocchia, J.B. Rawlings, D.Q. Mayne and W. Marquardt “On Computing
Solutions to the Continuous Time Constrained Linear Quadratic Regulator”, IEEE
Trans. Auto. Contr., 55 (9), 2192–2198, 2010
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Objectives of this work

Main goals

Devise an adaptive grid strategy

Prove convergence towards the optimal solution (with control constraints)

Provide degree of suboptimality for finite iterations

Working tools

Matrix exponentiation formulas to avoid ODE integration

Optimality functions for discrete-time and continuous-time CLQR problems

Functional analysis

Our focus
The algorithm is intended as a replacement for discrete-time MPC

We solve PT (x) many times, i.e. for any given current state x ∈Rn that occurs
in closed-loop operation
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Who needs ODE solvers anyway? ... ZOH case2

Consider a generic interval [0,∆]

It is well-known that:

x(∆) = A∆x(0)+B∆u(0) where A∆ = e A∆, and B∆ =
∫ ∆

0
e AτBdτ∫ ∆

0

(
x(τ)′Qx(τ)+u(τ)′Ru(τ)

)
dτ= x(0)′Q∆x(0)+2x(0)′M∆u(0)+u(0)′R∆u(0)

How to compute
∫ ∆

0 e AτBdτ and (Q∆, M∆,R∆) without ODE solvers?

All at once... (faster and much more accurate)

Define C and its exponential: C ,

[−A′ I 0 0
−A′ Q 0

A B
0

]
, eC t ,

[F1(t ) G1(t ) H1(t ) K1(t )
F2(t ) G2(t ) H2(t )

F3(t ) G3(t )
F4(t )

]
then:

e A∆ = F3(∆) B∆ =G3(∆)

Q∆ = F ′
3(∆)G2(∆) M∆ = F ′

3(∆)H2(∆) R∆ = [
B ′F ′

3(∆)K1(∆)
]+ [∗ ]′

2C.F. Van Loan “Computing Integrals involving the Matrix Exponential”, IEEE
Trans. Auto. Contr., 23 (3), 395–404, 1978
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Who needs ODE solvers anyway? ... PWLH case

Consider a generic interval [0,∆]
Let w(0) = (u(0), v(0)). Assume PWLH:
u(t ) = u j (1− r (t ))+ v j r (t ) with r (t ) = t

∆

Obtain without ODE solvers the discretized system and cost matrices:

x(∆) = A∆x(0)+B∆w(0)∫ ∆

0

(
x(τ)′Qx(τ)+u(τ)′Ru(τ)

)
dτ= x(0)′Q∆x(0)+2x(0)′M∆w(0)+w(0)′R∆w(0)

Define a suitably augmented system... and we’re done

Let: A∗ ,
[

A B
0 0

]
, B∗ ,

[
B 0
− I
∆

I
∆

]
, Q∗ ,

[Q 0
0 0

]
.

Define C and exp(C∆) as in ZOH and obtain:

A∆ = F3(∆)(1:n,1:n) B∆ =G3(∆)(1:n,:) Q∆ = (F ′
3(∆)G2(∆))(1:n,1:n)

M∆ = (F ′
3(∆)H2(∆))(1:n,:) R∆ =

[
1
3 R∆ 1

6 R∆
1
6 R∆ 1

3 R∆

]
+ [

B ′F ′
3(∆)K1(∆)

]+ [∗ ]′
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Generalities on optimality functions

Preliminaries: the space of control and state trajectories

The control u(·) is assumed to lie in U defined as:

U , {u : [0,T ] →Rm | u(·) measurable and u(t ) ∈U for all t ∈ [0,T ]}

For any 1 ≤ p ≤∞, we observe that U ⊆ Lp , Banach space defined as:

Lp , {u : [0,T ] →Rm | u(·) measurable and ‖u(·)‖p <∞}

u(·) ∈U implies that x(t ),φ(t ; x,u(·)) is absolutely continuous

Seeking an optimality function

Given the initial state x ∈Rn and a control u(·) ∈U ⊂ Lp , we seek a
continuous, nonpositive function θ :Rn ×U →R≤0 such that

Ï θ(x,u(·)) < 0 if u(·) is not optimal for PT (x)
Ï θ(x,u(·)) = 0 if u(·) is optimal for PT (x) – “optimal” rather than “locally optimal”

because PT (x) is strictly convex
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An optimality function for PT (x)

Cost gradient w.r.t. u(·) and its relation to the Hamiltonian

Given (x,u(·)), let x(t ) =φ(t ; x,u(·)). Define λ : [0,T ] →Rn , solution to the
adjoint equation:

−λ̇(t ) = A′λ(t )+Qx(t ) λ(T ) = P x(T )

Define the Fréchet derivative of VT (·) w.r.t. u(·) as g (x,u(·)) = DuVT (x,u(·))

For any t ∈ [0,T ], there holds: g (x,u(·)(t ) =∇u H(x(t ),u(t ),λ(t )), where
H :Rn ×Rm ×Rn →R is the Hamiltonian:

H(x,u,λ), `(x,u)+λ′(Ax +Bu)

Definition
Define (since x is fixed in the algorithm execution we omit it) θ : U → R≤0

θ(u(·)),
∫ T

0
〈g (x,u(·))(t ),u∗(t )−u(t )〉d t where

u∗(t ), arg min
v∈U

〈g (x,u(·))(t ), v〉
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An optimality function for PT (x): results and computation

Main results
Result 1: θ(u(·)) is an optimality function for PT (x)

Result 2: Since PT (x) is a convex problem, there holds

V 0
T (x) ≥VT (x,u(·))+θ(u(·)) where V 0

T (x), min
u(·)∈U

VT (x,u(·))

Computation (... ODE solver based)

Integrate (backward) the adjoint equation to define g (x,u(·))(t )

Evaluate u∗(t ) and compute the integral defining θ(u(·))

Note: the above steps can be computed with an ODE (in n +1 variables) solver call
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Discretized problem and its solution

Discretization (PWLH case)

A discretization γ is a sequence of Jγ
intervals with disjoint interiors:
I j , {[t j , t j+1] | j ∈ I0:Jγ−1} such that

[0,T ] =⋃Jγ−1
j=0 I j

U γ, {u(·) ∈U | u(·) is linear in each I j } t0 = 0

u0 u1

u2

∆2∆1∆0

t1 t2 t3

v0

v2

t Jγ = T

v1

v Jγ−1

Solution to the discretized problem

P
γ

T (x) : minu(·)∈U γ VT (x,u(·)) is equivalent to:

min
w

V γ

T (x,w),
Jγ−1∑
j=0

L j (x j , w j )+V f (x Jγ ) s.t. x j+1 = A j x j +B j w j , w j = (u j , v j ) ∈U2

where: x0 = x, w, (w0, w1, . . . , w Jγ−1), L j (x, w) = 1
2 (x ′Q j x +2x ′M j w +w ′R j w) and

(A j ,B j ,Q j , M j ,R j ) are the discretized matrices for interval size ∆ j
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A fast and useful (discrete-time) lower bound

Optimality function for PγT (x)

Discrete-time adjoint system:

λ j = A′
jλ j+1 +M ′

j w j +Q j x j λJγ = P x Jγ

and Hamiltonian: H j (x, w,λ), L j (x, w)+λ′(A j x +B j w)

Gradient of optimal cost: gγ(x,w),DwV γ

T (x,w) = {g0, g1, . . . , g Jγ−1} where

g j =∇w j H j (x j , w j ,λ j+1) = M j x j +R j w j +B ′
jλ j+1

Optimality function: θγ(u(·)) =∑Jγ−1
j=0 θ

γ

j where θγj , 〈g j , w∗
j −w j 〉 and

V 0,γ
T (x) ≥V γ

T (x,w)+θγ(u(·))

Let ∆ be the “smallest possible” interval size

The finest discretization γ∆ is that in which all intervals have size equal to ∆

θ∆(u(·)), θγ
∆

(u(·)) is an optimality function for PγT (x) at finest discretization
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Overall (conceptual) algorithm

Setup

Γ∆ is the set of all discretizations in which each ∆ j is an even multiple of ∆

γ′ ∈ Γ∆ is a refinement of γ ∈ Γ∆ if γ′ is derived from γ bisecting some intervals

Master algorithm

Data: x ∈Rn , ∆> 0, ε> 0, c ∈ (0,1), γ ∈ Γ∆
Step 1: Solve PγT and obtain control u(·) ∈U γ. Compute θ∆(u(·))

Step 2: Refine γ (repeatedly) until θγ(u(·)) ≤ cθ∆(u(·))

Step 3: If θ∆(u(·)) <−ε, go to Step 1. Else go to Step 4

Step 4: Replace ε← ε
2 , ∆← ∆

2 . Bisect largest interval in γ and go to Step 1

Comments
At the end of Step 1: θγ(u(·)) = 0. In Step 2 γ is refined, thus θγ(u(·)) < 0

In Step 4, we can use ε← c1ε and ∆← c2∆where c1,c2 ∈ (0,1)
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Implementation aspects

Adaptive bisection strategy

Given γ and u(·), if we bisect an interval I j obtaining (I j1 , I j2 ), the PWLH

parameters in each subinterval are: w j1 = (u j ,
u j +v j

2 ), w j2 = (
u j +v j

2 , v j )

We can easily compute θγj = 〈g j1 , w∗
j1
−w j1〉+〈g j1 , w∗

j1
−w j1〉

If
∑
θ
γ

j > cθ∆(u(·)), we bisect all intervals and repeat the procedure. Else, we

bisect the smallest number of I j such that θγ(u(·)) ≤ cθ∆(u(·))

Stopping criteria

As written, the Master algorithm does not terminate

Possible stopping criteria can be (for some small ρ > 0):
Ï In Step 4, compute the CT optimality function θ(u(·)) and stop if θ(u(·)) ≥−ρ
Ï After Step 1, stop if θ∆(·) ≥−ρ

Offline computations (performed for different interval sizes)

All matrices required for PγT (x) and θγ(u(·)) are computed and stored offline
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Convergence analysis: preliminary definitions and results

Definitions
Let ui (·) be the control function computed at iteration i of the Algorithm

Same meaning for εi , γi and ∆i

Let δi be the size of the largest interval at iteration i

Preliminary considerations

The “loop” Step 1 to Step 3 is always executed a finite number of iterations

Let I index the subsequence of iterations in which Step 4 is executed

Clearly: (εi ,∆i ) → 0 as i
I−→∞. Hence, δi → 0 as i

I−→∞

Theorem (Continuity of the optimal solution to PT (x))

u0(·) : [0,T ] →U is Lipschitz continuous
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Convergence analysis: main results

Theorem (Convergence of the cost VT (·) computed by the algorithm)

It follows that VT (x,ui (·))
I−→V 0

T (·) as i →∞

Proof ingredients

Let u∗
i (·) be the sample-hold version (in PWLH sense) of u0(·) according to

discretization γi

Use Lipschitz continuity of u0(·) to show that u∗
i (·) I−→ u0(·) as i →∞, because

δi → 0

Since VT (·) is continuous, it follows that VT (x,u∗
i (·))

I−→V 0
T (·) as i →∞

Since u∗
i (·) ∈U γi , i.e. feasible for Pγi

T (·), there holds

V 0
T (x) ≤VT (x,ui (·)) ≤VT (x,u∗

i (·))

Corollary (Convergence of the control function ui (·))

It follows that ui (·) I−→ u0(·) in Lp as i →∞
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Illustrative example: system and algorithm parameters

System, LQ penalties and input constraints

Stable system with one slow over-damped mode (time constant of 10) and
two fast oscillating modes (time constant of 1)

0.02s2+5.04s+1
0.4s3+0.84s2+10.08s+1

LQ penalties: Q = I , R = 0.1

Input constraints: u ∈U= [−1, 1]

Algorithm parameters

Final time T = 5

Initial discretization points t j ∈ {0, 1, . . . ,4}

Initial finest discretization size ∆= 0.0625 (80 intervals)

Initial Step 3 tolerance ε= 0.1

Refinement parameter c = 0.8
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Illustrative example: using the conceptual algorithm
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Illustrative example: using the practical algorithm (PWLH)
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Conclusions and work in progress

Concluding remarks

Proposed/revised an algorithm for solutions to continuous-time constrained
LQR problem

Adaptive discretization and piece-wise linear input parameterization
(constraint satisfaction and faster convergence)

No need for ODE solvers in all steps (offline and online) due to clever
exponentiation formulas

Optimality functions are proposed and computed, which provide useful
information for grid refinement and practical stopping conditions

Convergence towards the optimal solution is proved

Current work
Fast implementation (so far plain Octave was used...)

Efficient (almost) analytical computation of CT optimality function

Closed-loop stability and nominal robustness
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